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Abstract
Humans are funny creatures. They live in a 4-dimensional

universe, yet solve problems of 3 dimensions. This term paper
aims to drive into the reader’s mind how something as simple
as walking from your bed to your bathroom is actually a com-
plex path called geodesic in 4D space. But let’s not drive you
in circles, and get straight to the point.

Introduction

Our intuition tells us that every square should close. The world is far stranger
than our intuition would have us believe.The geometry does not have to work
as per our intuition. When it does, it is called Euclidean. But in the vast
majority of cases when it does not, it is called non-Euclidean geometry.

Each Non-Euclidean geometry is a consistent system of definitions, as-
sumptions, and proofs that describe such objects as points, lines, and planes.
The two most common non-Euclidean geometries are spherical geometry and
hyperbolic geometry. The property of spherical geometry is that the sum of
the angles of a triangle is always greater than 180◦ whereas it’s less than 180◦

in hyperbolic.

As an example of this, take a spherical ball and imagine yourself to be an
ant living on the ball (yep, that’s how you imagine stuff). Now start traveling
from any point on the equator of the ball and head for either of its poles to
cover a certain distance. From the pole, turn by 90◦ and cover the same dis-
tance as was covered previously. You’ll reach somewhere on the equator again.
Again, turn to the same direction as before by 90◦ and walk the same distance
again. Make the same turn again and you’ll be back where you started with
in the same orientation as the initial. Hence, it takes you three right-angle
turns to return to the initial point and the orientation in this case. Also, if we
measure the angles of this triangle covered by the ant, they will not add up to
180◦ either.

Now, imagine yourself to be the same ant on the same ball and travel-
ing again (ants in maths always travel). But now the difference is you’re not
traveling till the pole. Start from a point, and take 5 steps (ant steps, to be
precise), then keep turning by 90◦ and traveling the same distance till you
reach the initial point with initial orientation like in the previous example.
How many turns did you need to take? Intuitively, shouldn’t it be 3, as it was
in the previous example?

The number of turns would have been 4, tracing a square. This differ-
ence arises as a result of the difference between Euclidean and non-Euclidean
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Geometries, as mentioned above. On the small scale, the world would look per-
fectly Euclidean to you. Returning to the initial point of the journey would
take 4 right-angle turns. The same is not the case with the non-Euclidean
space though.

A geodesic is a curve on a surface that a person on the surface would per-
ceive as straight, while to a person capable of viewing from a point not on
the surface, the path may have non zero curvature. Lets us take the earth for
example. A “straight” highway from Delhi to Bangalore would obviously have
to be curved, if it is to stay on this planet.1

If the surface does have non zero curvature, in order to stay on the path,
the tangential component of acceleration must be 0. If it wasn’t, we would
simply fly off the surface (assuming the surface is smooth). Or equivalently,
acceleration of an object on a curve on a surface can only have a component
in a direction perpendicular to direction of motion. Hence acceleration has to
be perpendicular to tangent.

A curve γ on a surface S is called a geodesic if γ(t) is zero or perpendicular
to the tangent plane of the surface at the point γ(t), i.e., parallel to its unit
normal, for all values of the parameter t.

We now make the claim that any geodesic has constant speed.

Proof. Let γ(t) be a geodesic on a surface S. Then, denoting d/dt by a dot,

d

dt
‖ γ̇ ‖2= d

dt
(γ̇ · γ̇) = 2γ̈ · γ̇

Since γ is a geodesic, γ̈ is perpendicular to the tangent plane and is there-
fore perpendicular to the tangent vector γ̇. So γ̈ · γ̇= 0 and the last equation
shows that ‖ γ̇ ‖ is constant.

Geodesics preserve a direction on a surface (Tietze 1965, pp. 26-27) and
have many other interesting properties. The normal vector to any point of a
geodesic arc lies along the normal to a surface at that point (Weinstock 1974,
p. 65).

Furthermore, no matter how badly a sphere is distorted, there exist an
infinite number of closed geodesics on it. This general result, demonstrated in
the early 1990s, extended earlier work by Birkhoff, who proved in 1917 that
there exists at least one closed geodesic on a distorted sphere, and Lyusternik

1This argument assumes that the earth is an ellipsoid. The proof is left as an exercise to
the reader.
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and Schnirelmann, who proved in 1923 that there exist at least three closed
geodesics on such a sphere

Suppose fS(t) is a function that gives a path between two points on a sur-
face S, based on the parameter t. Minimizing fS(t) would hence give us the
shortest path, which is a geodesic. A geodesic is therefore a locally length-
minimizing curve. Equivalently, it is a path that a particle which is not ac-
celerating would follow. In the plane, the geodesics are straight lines. On the
sphere, the geodesics are great circles (like the equator). The geodesics in a
space depend on the Riemannian metric, which affects the notions of distance
and acceleration.

We now attempt to calculate the equation of a geodesic on an arbitrary
surface. We use the help of the following equation, more commonly known as
the Euler-Lagrange Equation2 :

∂L

∂v
− d

du

(
∂L

∂v′

)
= 0 (1)

For a surface given parametrically by x = x(u, v), y = y(u, v), and z =
z(u, v), the geodesic can be found by minimizing the arc length

I ≡
∫
ds =

∫ √
dx2 + dy2 + dz2 (2)

But

dx =
∂x

∂u
du+

∂x

∂v
dv (3)

dx2 =
∂x

∂u

2

du2 + 2
∂x

∂u

∂x

∂v
dudv +

∂x

∂v

2

dv2 (4)

and similarly for dy2 and dz2. Plugging in

2Euler-Lagrange equation is a second-order partial differential equation whose solutions
are the functions for which a given functional is stationary. Because a differentiable func-
tional is stationary at its local extrema, the Euler–Lagrange equation is useful for solving
problems in which, given some functional, one seeks the function minimizing or maximizing
it.
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I ≡
∫ {[(

∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2
]
du2+2

[
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v

]
dudv+[(

∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2
]
dv2

}1/2

(5)

This can be rewritten as

I =

∫ √
P + 2Qv′ +Rv′2 du (6)

=

∫ √
Pu′2 + 2Qu′ +R dv (7)

where

v′ ≡ dv

du
(8)

u′ ≡ du

dv
(9)

and

P ≡
(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂z

∂u

)2

(10)

Q ≡ ∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
(11)

R ≡
(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂z

∂v

)2

(12)

Starting with equation (5)

I =

∫ √
P + 2Qv′ +Rv′2 du (13)

=

∫
Ldu (14)

and taking derivatives,

∂L

∂v
=

1

2
√
P + 2Qv′ +Rv′2

(
∂P

∂v
+ 2

∂Q

∂v
v′ +

∂2R

∂v∂v′

2
)

(15)
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∂L

∂v′
=

1

2
√
P + 2Qv′ +Rv′2

(2Q+ 2Rv′) (16)

so the Euler-Lagrange differential equation then gives

∂P
∂v

+ 2∂Q
∂v
v′ + ∂R

∂v
v′2

2
√
P + 2Qv′ +Rv′

− d

du

(
Q+Rv′√

P + 2Qv′ +Rv′2

)
= 0 (17)

Solving the above differential is a herculean task for most surfaces. How-
ever, natural surfaces are often symmetric, and we can use this symmetry to
our advantage.3

In the special case when P, Q, and R are explicit functions of u
only,

Q+Rv′√
P + 2Qv′ +Rv′2

= c1 (18)

Q2 + 2QRv′ +R2v′2

P + 2Qv′ +Rv′2
= c1

2 (19)

v′
2
R(R− c12) + 2v′Q(R− c12) + (Q2 − Pc12) = 0 (20)

v′ =
1

2R(R− c12)
[2Q(c1

2 −R)±
√

4Q2(R− c12)2 − 4R(R− c12)(Q2 − Pc12)]

(21)
Now, if P and R are explicit functions of u only and Q=04,

v′ =

√
4R(R− c12)Pc12
2R(R− c12)

= c1

√
P

R(R− c12)
(22)

The equation of a geodesic on such a surface is then,

v = c1

∫ √
P

R(R− c12)
du (23)

In the case Q=0 where P and R are explicit functions of v only,
then

3Such equations are known as Clairaut’s relation. It is the main classical tool used to
get qualitative information about geodesics on surface of revolution.

4The constant C1 is called the Clairaut’s constant.
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∂P
∂v

+ v′2 ∂R
∂v

2
√
P +Rv′2 − d

du
Rv′√
P+Rv′2

= 0 (24)

So,

∂P

∂v
+ v′

2∂R

∂v
− 2
√
P +Rv′2 R

[
v′′√

P +Rv′2
+ (−1

2
)
v′(2Rv′v′′)

(P +Rv′2)3/2

]
= 0 (25)

∂P

∂v
+ v′

2∂R

∂v
− 2Rv′′ +

2Rv′2v′′

P +Rv′2
= 0 (26)

Rv′2√
P +Rv′2

−
√
P +Rv′2 = c1 (27)

Rv′
2 − (P +Rv′

2
) = c1

√
P +Rv′2 (28)

(
−P
c1

)2

= P +Rv′
2

(29)

P 2 − c12P
Rc12

= v′
2

(30)

,
The equation of a geodesic on such a surface is then,

u = c1

∫ √
R

P 2 − c12P
dv (31)

If a surface of revolution in which y=g(x) is rotated about the x-axis so
that the equation of the surface is

y2 + z2 = g2(x), (32)

the surface can be parameterized by

x = u (33)

y = g(u)cos v (34)

z = g(u)sin v (35)

The equation of the geodesics is then

v = c1

∫ √
1 + [g′(u)]2 du

g(u)
√

[g(u)]2 − c12
(36)
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The u-parameter curves are generat-
ing curves called meridians and the v -
parameter curves are circles, called par-
allels.

We state here a theorem without proof

Theorem 1. For a surface of revolution having parametrization x(u, v) =
(f(v) cosu, f(v) sinu, g(v)), any meridian is a geodesic and a parallel is a
geodesic if and only if f ′(v0) = 0.

Computing Geodesics of symmetric surfaces

Let us now use the derived symmetry to compute a few geodesics.
We will be referring to similar surfaces later in this paper

Hyperboloid

A hyperboloid is parameterized by

σ(u, v) = (a
√

1 + v2 · cos(u), a
√

1 + v2 · sin(v), bv)

With Differential parameters

P =

(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂y

∂u

)2

= a2(1 + v2) (37)

Q =
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
= 0 (38)

R =

(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂y

∂v

)2

=
a2v2

1 + v2
+ b2 (39)

The Geodesic equation is given by substituting in equation 31 :

u(v) = ±c
∫ v

v0

c
√

a2v2

1+v2
+ b2

2(1 + v2)
√
a2(1 + v2)− c2

(40)
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Clairaut’s relation of Hyperboloid is

a
√

(1 + v2) cos θ = 0 (41)

We consider 3 cases

1. Meridians on the Hyperboloid are geodesics which satisfies c = 0

Let α(s) = σ(u(s), v(s)) be a meridian on the Hyperboloid. Since θ is
the angle from σ(u) to α̇ , then θ = π/2 . By putting the meridian
θ = π/2 in Clairaut’s relation, we have a

√
(1 + v2) · cos(π/2) = c.

By Theorem 1 any meridian is a geodesic, hence meridians on the Hy-
perboloid are geodesic

2. Parallel on Hyperboloid at v0 = 0 is a geodesic which satisfies c = a.

Let α(s) = σ(u(s), v(s)) be a parallel on the Hyperboloid. Since θ is
the angle from σ(u) to α̇ , then θ = 0 . We obtain the parallel θ =
0 in Clairaut’s relation, we have c = a

√
(1 + v2) Moreover, (Theorem

1) a parallel is a geodesic iff f ′(v0) = 0. Since f(v) = a
√

1 + v2 then
f ′(v) = 2av√

1+v2
Thus f ′(v0) = 0 wherev0 = 0. Therefore, the parallel on

Hyperboloid at is geodesic which satisfies c = a
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3. Other geodesics satisfy
|c| < |a|

In this case, the geodesic is not perpendicular to any meridians which
satisfy a

√
(1 + v2) cos θ = c. This implies that |c| < |a| . For the example

below, the starting point (u, v) and the direction (du/ds, dv/ds) are
given.

Paraboloid

A paraboloid is parameterized by σ(u, v) = (av · cos(u), av · sin(v), v2)

With Differential parameters

P =

(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂y

∂u

)2

= a2v2 (42)

Q =
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
= 0 (43)

R =

(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂y

∂v

)2

= a2 + 4v2 (44)

The Geodesic equation is given by substituting in equation 31 :

u(v) = ±c
∫ v

v0

c
√
a2 + 4v2

av
√
a2v2 − c2

(45)

Clairaut’s relation of Paraboloid is

av cos θ = 0 (46)

We consider 3 cases
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1. Meridians on the Paraboloid are geodesics which satisfies c = 0

2. Parallel on Paraboloid at v0 = 0 is not geodesic which satisfies c = a
since f ′(v0) = a 6= 0 (Theorem 1).

3. . Other geodesics satisfy
|c| < |a|

.

Funnel

The Funnel is a surface of revolution obtained by rotating the curve ln v.

A funnel is parameterized by (av cos(u), av sin(u), ln v)

With Differential parameters

P =

(
∂x

∂u

)2

+

(
∂y

∂u

)2

+

(
∂y

∂u

)2

= a2v2 (47)

Q =
∂x

∂u

∂x

∂v
+
∂y

∂u

∂y

∂v
+
∂z

∂u

∂z

∂v
= 0 (48)

R =

(
∂x

∂v

)2

+

(
∂y

∂v

)2

+

(
∂y

∂v

)2

= a2 +
1

v2
(49)

The Geodesic equation is given by substituting in equation 31 :

u(v) = ±c
∫ v

v0

c
√
a2v2 + 1

av2
√
a2v2 − c2

(50)
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Clairaut’s relation of Paraboloid is

av cos θ = 0 (51)

We consider 3 cases

1. Meridians on the Funnel are geodesics which satisfies c = 0

2. Parallel on Funnel at v0 = 0 is not geodesic which satisfies c = a since
f ′(v0) = a 6= 0 (Theorem 1).

3. . Other geodesics satisfy
|c| < |a|

.
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Figure 1: The Confused Screaming: The reaction while trying to understand
this maths behind all the physics.

The Spacetime Curvature

Space is flat........

We can now use all these concepts to explain the phenomenon of flat or curved
space. Consider three points in space, and join them with the light from laser
beams, if you find that the triangle doesn’t have the expected sum of angles
of 180◦, that means that space is curved. And when the angles do add up to
180◦, that is what it means for space to be flat. Mass also affects the overall
geometry of the universe. The energy and the density of matter in the universe
determines whether the universe is flat, open or closed.

If the density is equal to the critical density, then the universe has zero
curvature; it is flat. You can imagine this flat universe to be like a sheet of
paper that extends infinitely in all directions. A universe with density greater
than the critical density makes a closed universe. This can be imagined as the
surface of a sphere and it has positive curvature. And if the universe’s density
is less than the critical density, then the universe is open and has negative
curvature, like the surface of a saddle or a pringle.

Measurements from the Wilkinson Microwave Anisotropy Probe (WMAP)
have shown the observable universe to have a density very close to the critical
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density (within a 0.4% margin of error). Of course, the observable universe
may be many orders of magnitude smaller than the whole universe. But the
part of the universe we can observe appears to be fairly flat.

.......But the Spacetime Is Not!

Now, the space is flat, but space-time isn’t. How do we know that? According
to Einstein’s theory of general relativity, massive objects warp the spacetime
around them. In classical physics, time proceeds constantly and independently
for all objects. In relativity, spacetime is a four-dimensional continuum com-
bining the familiar three dimensions of space with the dimension of time.

This can be explained with the help of the analogy by considering space-
time as a rubber sheet that can be deformed. In any region distant from
massive cosmic objects such as stars, space-time is uncurved—that is, the
rubber sheet is absolutely flat. If one were to probe space-time in that region
by sending out a ray of light or a test body, both the ray and the body would
travel in perfectly straight lines, like a child’s marble rolling across the rubber
sheet.

However, the presence of a massive body curves space-time, as if a bowling
ball were placed on the rubber sheet to create a cuplike depression. In the
analogy, a marble placed near the depression rolls down the slope toward the
bowling ball as if pulled by a force. Besides, if the marble is given a sideways
push, it will describe an orbit around the bowling ball, as if a steady pull
toward the ball is swinging the marble into a closed path.

And this is how Einstein’s theory explains the gravitational force to be.
According to Einstein’s general theory of relativity, gravity is no longer a force
that acts on massive bodies, as viewed by Newton’s universal gravitation. In-
stead, general relativity links gravity to the geometry of spacetime itself, and
particularly to its curvature. Gravity, in Einstein’s terms, can be considered
to be the effect the warping of spacetime around the massive bodies has on
other objects. Thus, to account for gravity in relativity, the structure of the
four-dimensional spacetime is not ’flat’ but is curved by the presence of mas-
sive bodies.

In the following figure, artistic representation visualizes spacetime as a
simplified, two-dimensional surface, which is being distorted by the presence
of three massive bodies, represented as colored spheres. The distortion caused
by each sphere is proportional to its mass. Now, a point to note here is
that space-time is curved, but space itself is flat. And almost all the visual
representations of ”space-time” curvature depict the spacial curvature only.
This is so because minds of the most of us (including mine) are not capable of
imagining the fourth dimension, imagining the time as the fourth dimension
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Figure 2: Two dimensional surface being distorted by the presence of three
massive bodies with distortion proportional to their masses.

is far away. But while using these pictures as an aid for our imagination, we
should keep in mind that they are not what we will call the precise depictions
of space-time curvature.

Home Project:

To explore the above idea of rubber sheet analogy, we tried to make a toy
model to show how spacetime curvature actually works. We used a bedsheet
instead of the rubber sheet in the above analogy (since none of us had a rubber
sheet) representing the spacetime (as we’ve mentioned before, this gives a false
sense of actual spacetime as spacetime is a set of events and not of locations,
and this model gives the sense of spacial curvature only. But making an accu-
rate of model of something which we can barely imagine is difficult. So, we’ll
work with this.).

The figure (a) represents the uncurved or flat spacetime without any mass.
If the red lines on the bedsheet are considered to be the path of some object,
then as we can see, it’s perfectly straight.

The figure (b) shows the bedsheet with a heavy object (mortar) placed at
the center representing curved spacetime due to the mass. The two red lines
on the either side of the mass are clearly bent inwards due to the depression
created by the mass. This shows how the massive bodies warp spacetime.

For the figure (c), we dropped a ball at the edge of the bedsheet to observe
the path of object near the mass in spacetime. It didn’t come out to be
perfectly spiral as was expected, probably because the ball was too big. But
near the mortar, it does spiral around it. This path represents the geodesic.
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(a) Bedsheet represent-
ing the uncurved or flat
spacetime without any
mass.

(b) Bedsheet with a mor-
tar placed at the center
showing how the massive
bodies warp spacetime.

(c) The path of the
ball around the mortar
crudely representing the
geodesic.

Figure 3: A toy model explaining spacetime curvature and the path traced by
an object near a massive body.

The Geodesics:

Now, where in this all sci-fi physics do geodesics fall? As we saw above, gravity
is a warping of spacetime. Stars like our sun, which have strong gravitational
force, actually bend and stretch the fabric of the universe itself. But how does
this theory explain the day-to-day phenomenon we observe, like the falling of
two apples towards each other while free-falling under the earth’s gravitational
force? Well, according to Einstein, the warping of spacetime makes the objects
to travel on curved paths near massive objects (this can be picturized using
the marble analogy). That simply means that the phenomenon of attract-
ing apples which the flat spacetime explained assuming that they fall radially
along straight lines towards the center of the earth due to gravitational force,
can be explained using curved spacetime by assuming that instead of straight
lines, the apples actually travel along straight lines on the curved surface.

This changes our notion of what really a straight line in curved spacetime
is. Instead of calling them straight lines, we call them geodesics, which repre-
sent the straightest possible path of an object in curved spacetime. It is the
smallest curve joining any two points on the surface. It can also be defined
as a self-parallel curve, i.e., a curve whose tangent vector t satisfies ∇tt = κt,
where κ is any scalar function.

The mathematical significance of the geodesic, in the way that we under-
stood it, is explained above. The final equation of geodesic is the equation of
motion of freely-falling particles in a curved space-time. Particles traveling on
a geodesic feel no forces. It is a curved spacetime analogue of straight lines in
flat spacetime. As John A. Wheeler famously wrote general relativity can be
summarised in one sentence: “Space-time tells matter how to move; matter
tells space-time how to curve”.
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Figure 4: Effect of warping of spacetime by a massive body on other objects.

The above image also explains the path of planetary orbits which are circles
expressed as geodesics of the sphere.

Time Dilation

Gravitational fields are really a bending of space and time, the geodesics
through those regions of space are also bent. In space, light is bent in gravi-
tational fields and travels along geodesics.

Time goes faster the farther you are from the earth’s surface compared to
the time on the surface of the earth. This effect is known as “gravitational
time dilation”. Gravitational time dilation occurs because objects with a lot
of mass create a strong gravitational field. The stronger the gravity, the more
spacetime curves, and slower the time proceeds.

According to the theory of general relativity, time passes at different rates
at different levels of gravitational potential. Time passes slower in regions
of high gravitational potential than it does in regions of low gravitational
potential. This theory predicts that clock at different altitudes would run at
different rates.
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Figure 5: Earth’s mass warps space and time so that clocks in a “gravity well”
(a pull of gravity that a large body in space exerts) run slower and run faster
when outside the well (this is really time dilation due to spacetime curvature).
Although this is a very weak effect, the time difference can be measured on
the scale of meters using atomic clocks.

Black Holes:

Talking about the most convoluted curvatures of spacetime, we come to black-
holes. They warp the spacetime such that even light will travel on the highly
curved paths. Photons travel on the geodesic paths in spacetime. Near the
black hole, the curvature becomes so high that the light bends into the path
that all terminates at the blackhole’s singularity.

In 1916 the German astronomer Karl Schwarzschild described a new effect.
If the mass is concentrated in a vanishingly small volume, a singularity, gravity
will become so strong that nothing pulled into the surrounding region can ever
leave. Even light cannot escape. In the rubber sheet analogy, it as if a tiny
massive object creates a depression so steep that nothing can escape it. In
recognition that this severe space-time distortion would be invisible—because
it would absorb light and never emit any—it was dubbed a black hole.

In quantitative terms, Schwarzschild’s result defines a sphere that is cen-
tered at the singularity and whose radius depends on the density of the enclosed
mass. Events within the sphere are forever isolated from the remainder of the
universe; for this reason, the Schwarzschild radius is called the event horizon.
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Wormholes

In general relativity, a wormhole is considered to be a tunnel through which
two distant regions of spacetime can be connected. Wormholes contain two
mouths, with a throat connecting the two.

Ellis wormhole is a nongravitating, purely geometric, traversable wormhole.
Since there is no gravity in force, an inertial observer (test particle - can be a
photon) can sit forever at rest at any point in space, but if set in motion will
follow a geodesic of an equatorial cross section at constant speed.

(a) Geodesics confined to
one side of the wormhole
throat

(b) Geodesics spiraling
onto the wormhole
throat throughout

(c) Geodesics passing
through the wormhole
throat

Figure 6: Three examples of geodesics though a wormhole

Morris and Thorne used Ellis wormhole as a tool for teaching general relativity.

Morris and Thorne wormhole metric:

ds2 = −dt2 + dr2 + (b2 + r2)(dθ2 + sin2 θdφ2)

Geodesic Equations:
d2t

dτ 2
= 0

d2r

dτ 2
= r

[(
dθ

dτ

)2

+ sin2 θ

(
dφ

dτ

)2
]

d

dτ

(
(b2 + r2)

dθ

dτ

)
= (b2 + r2) sin θ cos θ

(
dφ

dτ

)2

d

dτ

(
(b2 + r2) sin2 θ

dφ

dτ

)
= 0
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Other applications of geodesics

1. Geodesic Domes and airframes - Geodesic domes enclose large vol-
ume of space using very less amount of construction material, are ex-
tremely lightweight and have great strength. They have also withstood
hurricanes, earthquakes, and fires better than rectangle-based structures.
They’ve been used for military radar systems, churches, auditoriums and
planetariums.

Geodesic airframes make use of a space frame and are like a basket-
weave of load bearing members. They are comparatively lighter and
stronger and since they are spaceframes with only the outer part having
the geodetic structure, the centre has a large empty space that can be
used to take payload or fuel.

2. Geodesy - Geodesy is the science of accurately measuring and under-
standing three properties of the Earth: its geometric shape, its orienta-
tion in space, and its gravitational field. One of the main purposes of
geodesy is to establish a reference system, define a set of points (known
as geodesic vertices) which form a geodesic network and based on these
points, coordinates for any point on the Earth’s surface can be com-
puted. Global Positioning System (GPS) is a space-based tool used by
geodesists to measure such points on the Earth’s surface.

3. Geodesic Methods in Computer Vision and Graphics - It includes
several applications of the numerical computation of geodesic distances
and shortest paths to problems in surface and shape processing, in im-
age segmentation, motion planning, sampling, meshing, comparison of
shapes and UV mapping.

4. Medical image analysis and image segmentation - Geodesic de-
formable models are used for medical image analysis. Semiautomatic seg-
mentation method based on the geodesic distance transform, addresses a
significant need in the field of neuro-oncology to obtain accurate tumor
volumes without the need for manual segmentation.
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